Cardinal Arithmetic in the Style of Baron von MüNchhausen
نویسنده
چکیده
In this paper we show how to interpret Robinson’s Arithmetic Q and the theory R of Tarski, Mostowski and Robinson as theories of cardinals in very weak theories of relations over a domain. Bei der Verfolgung eines Hasen wollte ich mit meinem Pferd über einen Morast setzen. Mitten im Sprung musste ich erkennen, dass der Morast viel breiter war, als ich anfänglich eingeschätzt hatte. Schwebend in der Luft wendete ich daher wieder um, wo ich hergekommen war, um einen größeren Anlauf zu nehmen. Gleichwohl sprang ich zum zweiten Mal noch zu kurz und fiel nicht weit vom anderen Ufer bis an den Hals in den Morast. Hier hätte ich unfehlbar umkommen müssen, wenn nicht die Stärke meines Armes mich an meinem eigenen Haarzopf, samt dem Pferd, welches ich fest zwischen meine Knie schloss, wieder herausgezogen hätte. Baron von Münchhausen.
منابع مشابه
Baron Münchhausen and the syndrome which bears his name: history of an endearing personage and of a strange mental disorder.
Munchausen syndrome, a mental disorder, was named in 1951 by Richard Asher after Karl Friedrich Hieronymus, Baron Münchhausen (1720-1797), whose name had become proverbial as the narrator of false and ridiculously exaggerated exploits. The first edition of Münchhausen's tales appeared anonymously in 1785 (Baron Münchausen's narrative of his marvelous travels and campaigns in Russia), and was wr...
متن کاملMechanizing Set Theory: Cardinal Arithmetic and the Axiom of Choice
Fairly deep results of Zermelo-Frænkel (ZF) set theory have been mechanized using the proof assistant Isabelle. The results concern cardinal arithmetic and the Axiom of Choice (AC). A key result about cardinal multiplication is κ⊗ κ = κ, where κ is any infinite cardinal. Proving this result required developing theories of orders, order-isomorphisms, order types, ordinal arithmetic, cardinals, e...
متن کاملLower bounds on the Münchhausen problem
“The Baron’s omni-sequence”, B(n), first defined by Khovanova and Lewis (2011), is a sequence that gives for each n the minimum number of weighings on balance scales that can verify the correct labeling of n identically-looking coins with distinct integer weights between 1 gram and n grams. A trivial lower bound on B(n) is log3 n, and it has been shown that B(n) is log3 n + O(log log n). In thi...
متن کاملBaron Münchhausen Redeems Himself: Bounds for a Coin-Weighing Puzzle
We investigate a coin-weighing puzzle that appeared in the 1991 Moscow Math Olympiad. We generalize the puzzle by varying the number of participating coins, and deduce an upper bound on the number of weighings needed to solve the puzzle that is noticeably better than the trivial upper bound. In particular, we show that logarithmically-many weighings on a balance suffice.
متن کاملMünchhausen Matrices
“The Baron’s omni-sequence”, B(n), first defined by Khovanova and Lewis (2011), is a sequence that gives for each n the minimum number of weighings on balance scales that can verify the correct labeling of n identically-looking coins with distinct integer weights between 1 gram and n grams. A trivial lower bound on B(n) is log3 n, and it has been shown that B(n) is O(log n). We introduce new th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Rew. Symb. Logic
دوره 2 شماره
صفحات -
تاریخ انتشار 2009